OBSERVATION BY PMR SPECTROSCOPY OF THE INTERMEDIATE ALKOXYCARBONIUM IONS IN THE ACID-CATALYSED DECOMPOSITION OF ORGANIC HYDROPEROXIDES

R. A. Sheldon and J. A. van Doorn Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B. V., Amsterdam-N, The Netherlands)

(Received in UK 2 February 1973; accepted for publication 14 February 1973)

The acid-catalysed decomposition of hydroperoxides to ketones (or aldehydes) and alcohols (or phenols) is generally believed 1-4 to proceed via the following steps:

We now report the observation, by PMR spectroscopy, of several alkoxycarbonium ions II, formed via an instantaneous reaction of the corresponding hydroperoxide I with FSO_3H/SbF_5 (5:1) at -40 $^{\circ}C$. In no case was the protonated hydroperoxide detected, even at -60 $^{\circ}C$.

Structure	Chemical shift ^a , ppm (multiplicity, J in Hz)	
C C = ⊕ O R	сн ₃	R
IIa R = methyl	3.08	4.89 (s)
R = ethy	3.05	CH ₂ 5.21 (q,7); CH ₃ 1.83 (t,7)
IIc R = isopropyl	3.05; 3.02 ^b	CH 5.87 (apt, 6); CH ₃ 1.79 (d,6)
	3.36; 3.04 ^b	t-Bu 1.45 (a); phenyl H 7.77, 7.30 (d,9)
C ₆ H ₅	C(3)H ₂ 3.89 (t,~7) C(4+5)H ₂ 2.2 (m) C(6)H ₂ 5.41 (t,7)	
VI (7 (8) 3 5 4	-	2.65 (t,7.5); C(4)H ₂ 2.07 (q,7); 2.95 (t,7) of (d,2); C(6)H 8.87 (t,2); 9.11 (a)

Table PMR spectroscopic data of alkoxycarbonium ions in FSO_H/SbF_ (5:1)

- a) Measured against tetramethylammonium ion (δ = 3.20) as internal reference.
- b) Methyl groups syn and anti with respect to R.
- c) Assignments for 3 and 5 positions may be reversed.

Treatment of Ia with FSO_3H/SbF_5 yielded >99% of IIa (cf. ref. 5 and 6). Similarly, Ib and Ic afforded IIb and IIc in 66 and 70% yield, respectively, the balance consisting of the hydrolysis products of these ions; no (<1%) products arising from methyl migration were observed.

The reactions of Id, e and f with FSO_3H/SbF_5 only led to the hydrolysis products (protonated acetone and protonated alcohol or phenol) of the intermediate ions. Obviously, ROH is a better leaving group when R = aryl or benzyl than when R = alkyl. In contrast, Ig afforded IIg in ca. 50% yield. It is not clear why IIg is more stable to hydrolysis than IIf.

With III the rates of alkyl and phenyl shift are similar⁷. This suggests that the stability of the product is reflected in the transition state, as cyclic cations analogous to IV are known^{3,8} to be stabler than their acyclic counterparts V.

The reaction of III with FSO₃/SbF₅ gave IV⁹ in 11% yield together with the hydrolysis products (protonated cyclopentanone and protonated phenol) of V in 64% yield. The 6:1 ratio of phenyl to alkyl shift is in good agreement with a previous study⁷ of the acid-catalysed decomposition of III. Ion IIh could not be observed in the reaction of Ih with FSO₃H/SbF₅ owing to its rapid hydrolysis to two moles of protonated acetone. However, 3-hydroperoxycyclohexene afforded VI in ca. 50% yield (together with unidentified products; no cyclohexenone, the product expected from H shift, was found). We attribute this difference in ease of observation to the greater stability in general of cyclic carbonium ions compared to their acyclic analogues^{3,8}

In two cases we observed VII, formed via C-O heterolysis. Thus, III afforded the 1-phenyl-cyclopentyl ion (25 %) and Ig gave VII (R = p-tert-butylphenyl) in 50 % yield.

References

- 1. R. Hiatt in "Organic Peroxides", Vol. 2, D. Swern, Ed. John Wiley and Sons, London, 1971, p. 65 and references cited therein.
- 2. A.W. de Ruyter van Steveninck and E.C. Kooyman, Rec. Trav. Chim., 79, 413 (1960).
- 3. N. C. Deno, W. E. Billups, K. E. Kramer and R. R. Lastomirsky, J. Org. Chem., 35, 3080 (1970).
- 4. J.O. Turner, Tetrahedron Letters, 1971, 887.
- 5. B. G. Ramsey and R. W. Taft, J. Am. Chem. Soc., 88, 3058 (1966).
- 6. G.A. Olah and J. Sommer, J. Am. Chem. Soc., 90, 4323 (1968).
- 7. G. H. Anderson and J. G. Smith, Can. J. Chem., 46, 1561 (1968).
- 8. D. M. Brouwer and J. A. van Doorn, Rec. Trav. Chim., 89, 553 (1970).
- 9. H.R. Ward and P.D. Sherman, J. Am. Chem. Soc., 90, 3812 (1968).